A Note on Stability of an Operator Linear Equation of the Second Order
نویسندگان
چکیده
and Applied Analysis 3 If p, 1/q ∈ Z, then solutions f : N0 → Z of the difference equation 1.7 are called the Lucas sequences see, e.g., 24 ; in some special cases they are given specific names; that is, the Fibonacci numbers p −1, q −1, f 0 0, and f 1 1 , the Lucas numbers p −1, q −1, f 0 2, and f 1 1 , the Pell numbers p −2, q −1, f 0 0, and f 1 1 , the Pell-Lucas or companion Lucas numbers p −2, q −1, f 0 2, and f 1 2 , and the Jacobsthall numbers p −1, q −2, f 0 0, and f 1 1 . 2. The Main Result Now we will present a theorem that is the main result of this paper. In this section, we consider only the case
منابع مشابه
On the stability of linear differential equations of second order
The aim of this paper is to investigate the Hyers-Ulam stability of the linear differential equation$$y''(x)+alpha y'(x)+beta y(x)=f(x)$$in general case, where $yin C^2[a,b],$ $fin C[a,b]$ and $-infty
متن کاملApplying fuzzy wavelet like operator to the numerical solution of linear fuzzy Fredholm integral equations and error analysis
In this paper, we propose a successive approximation method based on fuzzy wavelet like operator to approximate the solution of linear fuzzy Fredholm integral equations of the second kind with arbitrary kernels. We give the convergence conditions and an error estimate. Also, we investigate the numerical stability of the computed values with respect to small perturbations in the first iteration....
متن کاملSequential second derivative general linear methods for stiff systems
Second derivative general linear methods (SGLMs) as an extension of general linear methods (GLMs) have been introduced to improve the stability and accuracy properties of GLMs. The coefficients of SGLMs are given by six matrices, instead of four matrices for GLMs, which are obtained by solving nonlinear systems of order and usually Runge--Kutta stability conditions. In this p...
متن کاملNumerical solution of second-order stochastic differential equations with Gaussian random parameters
In this paper, we present the numerical solution of ordinary differential equations (or SDEs), from each order especially second-order with time-varying and Gaussian random coefficients. We indicate a complete analysis for second-order equations in special case of scalar linear second-order equations (damped harmonic oscillators with additive or multiplicative noises). Making stochastic differe...
متن کاملCalculation of Complicated Flows, Using First and Second-Order Schemes (RESEARCH NOTE)
The first-order schemes used for discretisation of the convective terms are straightforward and easy to use, with the drawback of introducing numerical diffusion. Application of the secondorder schemes, such as QUICK scheme, is a treatment to reduce the numerical diffusion, but increasing convergence oscillation is unavoidable. The technique used in this study is a compromise between the above-...
متن کاملA matrix LSQR algorithm for solving constrained linear operator equations
In this work, an iterative method based on a matrix form of LSQR algorithm is constructed for solving the linear operator equation $mathcal{A}(X)=B$ and the minimum Frobenius norm residual problem $||mathcal{A}(X)-B||_F$ where $Xin mathcal{S}:={Xin textsf{R}^{ntimes n}~|~X=mathcal{G}(X)}$, $mathcal{F}$ is the linear operator from $textsf{R}^{ntimes n}$ onto $textsf{R}^{rtimes s}$, $ma...
متن کامل